Detecting Mobile Malware with Classification Techniques

Ludovic Apvrille
ludovic.apvrille@telecom-paristech.fr

Axelle Apvrille
aapvrille@fortinet.com

Labex UCN@Sophia, Security Day, Dec. 18th, 2013
Outline

Context
- So many Android malware!
- SherlockDroid

Alligator
- Main principles
- Learning stage
- Guessing stage

Results
Outline

Context
So many Android malware!
SherlockDroid

Alligator

Results
The Big Picture on Android Malware

Recent Android Malware Evolution

Number of Android samples
Android samples per day

Total number of Android samples

Android samples per day (monthly average)

Institut Mines-Telecom
The Big Picture on Android Malware

Also, many malware remain undetected for a long time!

(Maybe you are currently using one on your mobile phone instead of listening to me?)
Are AV Analysts Lazy? No, Too Much Work!

- Samples sent by customers or firewall quarantine
- Malware exchange with other AV vendors
- Manual search in marketplaces

Ignored
Samples
(hatched)

Manual inspection for advanced analysis by AV analysts and researchers
Are AV Analysts Lazy? No, Too Much Work!

- Samples sent by customers or firewall quarantine
- Malware exchange with other AV vendors
- Manual search in marketplaces

Conclusion:
Smart filtering is necessary!
Prefiltering: Overview

CURRENTLY

Marketplaces

Ignored Samples (hatched)

Anti-virus scanner

Ok - detected

Not detected

Manual inspection for advanced analysis by AV analysts and researchers

OUR CONTRIBUTION

Samples we handle

Anti-virus scanner

Ok - detected

Not detected

DroidLysis + Alligator

Manual inspection for advanced analysis by AV analysts and researchers
So many Android malware!

SherlockDroid Architecture

- Google Play
- APKTop
- slideME
- ...

First filtering

- Already analyzed?
- SMS or Internet?
- AV scanning

Property extractor

- Encrypt
- Reflection
- POST

Classification/clustering

- Suspicious
- Clean

Database

SherlockDroid
Outline

Context

Alligator

Main principles
Learning stage
Guessing stage

Results
Fundamentals of Alligator

Draft Alligator script
Weight for each properties
Regular cluster
Malware cluster

Alligator Learning (i)
Alligator script

Alligator Guessing (ii)
Malware?
NO
YES

Static analysis of applications
DroidLysis
Property extractor
Yet Another Clustering Toolkit?

No! Alligator is much better!!!

- Dedicated to work with two pre-known clusters
- Handles several up-to-date clustering algorithms at the same time
 - Automatically determines how to combine them in an optimal way
- Option to settle a preference in reducing false positive or negative
- Very efficient - because we are very good programmers ;-)
- Free software
 - "Free": As in "free beer" AND as in "freedom" ;-)
Principle of Learning

Purpose

- Determining the importance to give to each couple (clustering algorithm, parameter)
Clustering Algorithms

Cluster-center oriented algorithms

1. Standard deviation
2. Correlation
3. Probability difference
4. Probability factor

Neighbourhood oriented algorithms

5. Proximity (a.k.a. k-NN)
6. Proximity with limited properties
7. Epsilon clusters
Guessing Stage

Determining the cluster (regular, malware) of unknown samples

- Correlation 0.80 regular 95
- Correlation 0.75 regular 830
- Proximity 100 malware 372

Alligator Guessing

Malware?
- NO
- YES

Guess samples
(from DroidLysis)

Weight for each properties

Regular cluster
Malware cluster

Alligator script

Correlation 0.80 regular 95
Correlation 0.75 regular 830
Proximity 100 malware 372
...
Outline

Context

Alligator

Results
Test Bench

<table>
<thead>
<tr>
<th>Type of cluster</th>
<th>Malware samples</th>
<th>Regular samples</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning clusters</td>
<td>82,985</td>
<td>8,299</td>
<td>Before June 14</td>
</tr>
<tr>
<td>Guess clusters</td>
<td>19,171</td>
<td>1,103</td>
<td>From June 15 to June 24</td>
</tr>
<tr>
<td>Total of samples tested</td>
<td>102,156</td>
<td>9,402</td>
<td></td>
</tr>
</tbody>
</table>

Number of samples in our test clusters
Test Bench (Learning Stage)

- All clustering algorithms considered with an average of 5 parameters for each
- Example:
 - Correlations: 0.80, 0.75, 0.70, 0.60
 - Epsilon clusters: ϵ-path of 10^{-5} to 10^{-1}
- Computation time: around 10 hours on a non dedicated host
Alligator was tested over those new sets of malware and clean files (20k new samples)

<table>
<thead>
<tr>
<th>Guessing</th>
<th>Regular</th>
<th>Malware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of failed / recognized</td>
<td>2 / 1,101</td>
<td>375 / 18,796</td>
</tr>
<tr>
<td>Failure / success rates in %</td>
<td>0.18% 99.81%</td>
<td>1.96% 98.04%</td>
</tr>
</tbody>
</table>
SherlockDroid is efficient!

- SherlockDroid = efficient combination of market crawler + property extractor + clustering
- Large sets of clusters tested
- Objective reached: \rightarrow 99.8% of clean applications are filtered out.
 - AV analysts can now be lazy ;-)
- Unknown malware discovered thanks to Alligatora
 - A new one discovered yesterday!

 Android/MisoSMS.A!tr.spy

asee e.g., http://blog.fortinet.com/Alligator-detects-GPS-leaking-adware/.
Limitations and Future work

- Clean cluster much smaller than malware cluster!
- More clustering algorithms
- Alligator could be used for many other purposes
Do Try Alligator!

pesso.telecom-paristech.fr/~apvrille/alligator.html

(Are you sure your qr-code reader application is not a malware???)